新手钓鱼人提示您:看后求收藏(第533节,走进不科学,新手钓鱼人,QT小说网),接着再看更方便。

请关闭浏览器的阅读/畅读/小说模式并且关闭广告屏蔽过滤功能,避免出现内容无法显示或者段落错乱。

艾维琳的直觉(下)

“……”

长椅上。

看着一脸虚心求教表情的艾维琳,徐云的表情不由有些微妙。

众所周知。

人有三大幻觉:

有人找我。

我能反杀。

他/她喜欢我。

作为一名很有逼数的后世来人。

徐云虽然没有自恋到妹子会和自己表白的地步,但在听到这姑娘有问题要问自己的时候,多少还是下意识的以为对方会冒出些和自己来路有关的话。

结果没想到……

艾维琳所说的问题,还真是一个问题?

斐波那契数列。

这是一个非常非常有名的数学谜团,在数学和生活以及自然界中都极其有用。

斐波那契数列最早可以追溯到公元7世纪,当时印度有个数学家叫做gopa。

此人在研究箱子包装物件长度恰好为1和2时的方法数时首先描述了这个数列,也就是下面这个问题:

有n个台阶,你每次只能跨一阶或两阶,上楼有几种方法?

接着这个问题再一次变化,进阶成了更有名的兔子谜团:

假设兔子在出生两个月后就有繁殖能力,一对兔子每个月能生出一对小兔子。

如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?

这个问题最终由斐波那契归纳成了一个数列,也就是:

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377……这样一个无限数列。

它的特点是后一个数字是前两个数字之和,0+1=1,1+1=2,1+2=3往后类推……

而且用前一个数字来除以后一个数字,就无限接近于黄金分割数0618。

这个数列用公式表达的话则是xn=x(n-1)+x(n-2),其中x0=0,x1=1。

小说《达芬奇密码》中。

卢浮宫馆长被人杀害陈尸在地板上,当时馆长脱光了衣服,摆成达·芬奇名画维特鲁威人并且留下了一些奇怪的密码。

而这些让人难以琢磨的密码,正是斐波那契数列。

自然界中的蜜蜂家谱、松果叶序甚至瓜果外形都和斐波那契数列有关——2005年曹则贤教授与中国科学院物理研究所合作,利用银核和氧化硅壳研究直径约10微米的微结构中的应力。

最终通过操纵银核和二氧化硅壳构成的无机微结构上的应力,顺利的产生了斐波那契螺旋图案。

数学和物理越深入研究,就越会感叹生命的奇妙。

对了。

既然说到了曹则贤教授,这里就顺带简单辟个谣。

这位曹则贤教授也是个争议性很大的名嘴,他是科技部973纳米材料项目的首席科学家,百人计划级别的大佬。

不过嘴中经常会冒出一些比较离谱的观点,其中有真也有假。

例如他曾经在国科大的讲座上说过这么一句话:

“有85%的数学和物理知识没有传入华夏,这些知识都被外国人紧紧捂着。”

这句话其实是有些唬人的,有点刻意为人设而口出狂言的味道。

谁都知道国外必然有一些知识没有与咱们共享,但那些内容主要涵盖于前端领域,并且决然没有85%这么离谱。

于是呢。

当时被和他一起说出口、用于佐证以上观点的另一句话,在网上便也成了笑谈:

“你们不知道吧,三角形有44072个心。”

但实际上这句话是正确的,并且是一个非常正式的数学研究方向。

只不过它是隶属于初等平面几何的结论,平几早就不再是前端数学的研究方向了,对于大多数人来说基本上用不到。

所以这个知识不是没传入国内,而是教了也没啥意义——哪怕是国外顶尖大学的顶尖竞赛班,也不会对这些三角心进行研究。

一般来说。

普通人只需要掌握五心,学几何的顶多顶多掌握50种就到顶了。

再往后差不多属于纯理论的范畴,极其冷门且偏僻。

因此曹教授拿这个例子去佐证“有85%的数学和物理知识没有传入华夏”的做法并不正确,不过本身这个数字没啥问题。

不是反智,更不是民科,因为三角心的判定是三线共点,由此锁定的心实在是太多太多了。

目前有个网站将这些心都收录在了一起,网址为facultyevansvilleedu/ck6/encyclopedia/etcpart4。(这位毕竟是蜗壳的教授,口嗨的内容躺平任嘲,不过这个数据倒确实是无误的)

ok,话题再回归原处。

斐波那契数列在生活和数学上的应用极广,而其中的完全平方项有哪些,也一直是个很有矛盾色彩

本章未完,点击下一页继续阅读。

其它小说相关阅读More+

琊恶透视系统

吉它

无A生还

八月有信